Что такое эффект Доплера? Применение - эффект доплера Эффект доплера объяснение.

1

Юшкевич Р.С., Дегтярева Е.Р.

В статье даётся вывод формул к эффекту Доплера без использования закона сложения скоростей, но с использованием принципа постоянства скорости света только относительно источника света. Определена пространственная граница возможности приёма электромагнитных волн. Рассмотрена зависимость скорости света от расстояния. Определен коэффициент для вычисления скорости света.

Для объяснения эффекта допускаем, что свет, идущий от источника света, связан с источником и распространяется от него со скоростью с = 3 · 10 8 м/с относительно источника. Для приемника скорость света относительно источника будет складываться со скоростью источникаv .

Чтобы определить зависимость частоты света ν от скорости v , рассмотрим распространение света от двух источников, один из которых Ѕ движется по направлению от приемника со скоростью v , а другой S 0 покоится.

Рис. 1.

Одинаковые источники излучают свет одинаковой частоты ν 0 . Свет относительно источников распространяется с одинаковой скоростью с , поэтому и длина излучаемой волны λ 0 будет одинакова. К приемнику от движущегося источника свет подойдет со скоростью с- v и длина волны λ 0 будет принята за время Т = (период), а от покоящегося источника - за время Т 0 = . Периоды есть величины обратные частотам колебаний и . Подставим значения Т и Т 0 в полученные равенства

разделив их почленно, получаем

,

получаем [с. 181].

(1)

В случае, когда источник и приемник сближаются, надо знак v заменить на противоположный, получим . Отметим, что с- v и c - это скорости света соответственно относительно приемника и источника света.

Теперь рассмотрим случай, когда источник света движется перпендикулярно направлению на приемник. Учитывая, что свет связан с источником, распространяется относительно его со скоростью с и сносится с ним со скоростью v , чтобы он попал на приемник его надо направить под некоторым углом α так, что sinα = . В этом случае составляющая скорости света, совпадающая с направлением на приемник А будет , составляющая v на это направление равна 0. Чтобы не повторять предыдущие рассуждения, воспользуемся формулой (1), с- v заменим на , а скорость с относительно источника останется неизменной. В результате получаем:

что соответствует результату, полученному в опытах Айвса [с. 181].

Рис. 2.

При переходе света от источника к приемнику меняется его частота от ν 0 до ν. Из формулы с=λν следует, что должна меняться и длина волны. Если от источника света шла волна длиной λ 0 , то приемник получит ее другой, допустим λ . Получить значение λ можно, воспользовавшись тем, что λ и ν величины обратно пропорциональные . Подставив значение ν из формулы (1), получим

Для большей уверенности получим эту формулу другим способом.

Любой приемник света может быть и излучателем, значит, он имеет такую же светонесущую среду, как и источник, и свет в ней распространяется со скоростью с . Свет, переходя из среды источника в среду приемника, получает скорость с относительно приемника.

Волна длиной λ 0 от источника к границе раздела сред источника и приемника подходит со скоростью с - v и границу пройдет за время C самого начала входа волны в сферу среды приемника ее начало приобретает скорость с относительно приеника и за время Т пройдет путь λ = сТ. Подставив значение Т , получаем:

Рис. 3.

В первой половине ХХ в. американский ученый Хаббл в спектрах далеких звезд обнаружил смещение спектральных линий в сторону красной части спектра по сравнению с лабораторными спектрами - «красное смещение». Это означало, что длина принимаемой волны λ больше, чем λ 0 и чем дальше звезда, тем больше «красное смещение».

В формулу (2) входят четыре величины λ, λ 0 , с и v . Кo времени открытия «красного смещения» скорость света с постулатом Эйнштейна была закреплена постоянной относительно любой системы отсчета, значит, и λ 0 , связанная со скоростью света с и источником излучения, оказалась постоянной. В формуле (2) переменная величина λ , оказалась связанной со скоростью источникаv . Увеличение λ вызывает и увеличение v .

«Красное смещение» наблюдается у звезд, расположенным по всем направлениям, поэтому был признан факт расширения Вселенной.

В астрономии связь между λ и v определяется другой формулой

(3)

для удаляющегося источника излучения.

Для одного и того же явления и одних и тех же величин двумя формулами устанавливается разная зависимость! Чтобы разобраться с этим, сравним результаты, которые дают эти формулы при различных v . Ограничений на значение скорости v формулы не требуют. Для удобства длины волн обозначим λ 3 и λ 2 соответственно обозначению формул (3) и (2 ), в которые они входят. При v =0 :

При 0< v < с сравним делением:

Если v «с , то и λ 3 ≈ λ 2 . При этих двух условиях результаты практически не противоречат друг другу.

При v = с; λ 2 превращается в бесконечность, при этом формула (1) дает . Получается, что световая волна от источника к приемнику не попадает, она со скоростью с от источника будет двигаться к приемнику и вместе с источником будет с такой же скоростью уходить от него с - с = 0 .

Третье сравнение требует сделать вывод, какая же формула правильно отражает действительность. Происхождение формулы (2) рассмотрено в начале статьи. Теперь рассмотрим, как получается формула (3).

Рис. 4.

Представим, что источник света окружен средой, в которой свет распространяется к приемнику со скоростью с . Источник света в точке А начал излучать волну. Время излучения одной волны обозначим Т (период). С момента появления начала волны оно начинает перемещаться к приемнику в окружающей среде со скоростью с и за время Т удалится от точки А на расстояние сТ . Но за это же время источник, двигаясь от приемника окажется в точке С , пройдя расстояние АС = v Т , где и окажется конец волны. Расстояние от С до В и будет длиной волны λ = сТ + v Т = (с + v

Если источник не движется, то v = 0 и длина волны будет λ 0 = сТ. Разделив λ на λ 0 , получим:

В начале статьи мы рассмотрели среду, которая обеспечивает скорость света с, она либо связана с источником, либо с приемником света. Первая - дает формулы (1) и (2). Вероятность того, что вторая, от далеко расположенного приемника света, на скорость света больше влияла, чем среда источника света, ничтожно мала. Остается среда, не связанная ни с источником ни с приемником света, которая действует подобно воздуху (веществу) на распространение звука. Но отрицательный результат опытов Майкельсона по обнаружению «эфирного ветра» доказал, что такой среды в природе нет. Остается сделать предпочтение формуле (2). Ранее отмечалось, что при удалении источника света со скоростью v = с волна не достигнет приемника, и сигнал не будет получен.

Хабл ввел закон, носящий его имя [с. 120]

v = НD ,

где v - скорость удаления источника света, D - расстояние между источником и приемником, Н - коэффициент пропорциональности, называемой постоянной Хабла.

.

1 Мпк = 10 6 пк; 1пк (парсек) = 3,26 светового года = 3 . 10 13 км.

Найдем расстояние, при котором v = с: ;

D - это радиус сферы, ограничивающей прием прямого электромагнитного излучения из просторов Вселенной. Из прилегающих к этой сфере зон во внутренней ее части электромагнитные излучения могут приходить только в виде радиоволн. В природе не наблюдается какого-либо приоритетного направления в распределения звезд, поэтому радиоизлучение должно приходить со всех сторон равномерно.

Рассмотрим вариант, когда v >с. В этом случае формулы (1) и (2) дают: и .

Это означает, что волна должна приходить с направления, противоположного тому, где находиться излучатель.

При v = 2с имеем

.

Волна придет без «красного смещения». Определенная в статье граница возможного приема электромагнитного излучения будет верной, если верен закон Хаббла и «красное смещение» вызвано исключительно удалением излучателя. Если же обнаружатся другие факторы, уменьшающие скорость света относительно приемника (а они могут быть), то граница приема волн может быть приближена.

Обратимся теперь к формулам (1) и (2). В них c-v есть скорость света относительно приёмника, обозначим её с 1 =с-v откуда v=c-c 1 .В формулах v представляет разность скоростей света независимо от природы её возникновения. Принято считать, что это результат удаления источника света. Но эта разность скоростей может возникнуть и за счет уменьшения скорости света с увеличением расстояния. Свет это поток квантов энергии и, возможно, что скорость их может уменьшаться.

Предположим, что скорость света с увеличением расстояния от источника света уменьшается, образно говоря «свет стареет».

Известно, что скорость света уменьшается при переходе из оптически менее плотной среды в более плотную. Вызвано это тем, что, что меняются условия для прохождения света. Уменьшение скорости характеризуется показателем преломления n; , где с - скорость света в вакууме а с 1 - скорость в другой среде.

Если по предположению, скорость света уменьшается с увеличением расстояния от источника света, то, значит, меняются и условия его прохождения, что также можно характеризовать показателем преломления n. Получаем, что уменьшенная скорость света будет .

В статье «Опыт Физо» (ж. «Современные наукоёмкие технологии» №2, 2007г.) для определения скорости света в движущейся среде показатель преломления n был использован в виде , где часть показателя, определяемая излучающим атомом, а определяется условиями прохождения света в среде.

Применим такое представление показателя преломления и для вакуума. Если мы приняли предположение, что в вакууме скорость света уменьшается, а вакуум является однородной средой, то уменьшение скорости света должно зависеть только от расстояния и пропорционально ему. Поэтому можно записать ,где D -расстояние до источника света, μ - коэффициент пропорциональности постоянная величина. Скорость принимаемого света будет

Разность между начальной и уменьшенной скоростями света будет

Здесь выражена зависимость между уменьшением скорости света и расстоянием D . Связь между этими же величинами выражает и закон Хабла где v - скорость удаления звезды, что для приёмника света есть разность с-с 1 .

Сравним значения v , которые дают эти два уравнения для предельных значений расстояния D.

Если , то из первого уравнения получаем: , n =1 (для малых расстояний) и . Из закона Хаббла также получаем .

Если это совпадение не случайно, можно предположить, что кванты световой энергии связаны с излучателем, на это же указывает и связь светонесущей среды с источником света.

Чтобы определить скорость с 1 , надо решить относительно n уравнение:

и через n найти скорость с 1 .

Для малых значений D можно использовать закон Хаббла.

В статье имеется явное противоречие. Основываясь на понятии о расширении Вселенной, получен вывод о существовании границы возможного приема электромагнитных волн, а, основываясь на естественном уменьшении скорости света, такая граница отсутствует. Получается, что обнаружение такой границы будет являться доказательством расширения Вселенной.

В статье также без убедительных оснований принято предположение о зависимости скорости света от расстояний. Основания для этого предположения будут обнаружены при рассмотрении процесса излучения квантов света атомом.

СПИСОК ЛИТЕРАТУРЫ:

  1. Зисман Г.А., Тодес О.М., Курс общей физики т.3. - М.: «Наука», 1972г.
  2. Воронцов - Вельяминов Б.А. Астрономия 10. - М.: «Просвещение», 1983г.

Библиографическая ссылка

Юшкевич Р.С., Дегтярева Е.Р. ЭФФЕКТ ДОПЛЕРА И СКОРОСТЬ СВЕТА // Фундаментальные исследования. – 2008. – № 3. – С. 17-24;
URL: http://fundamental-research.ru/ru/article/view?id=2764 (дата обращения: 16.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Источник волн перемещается налево. Тогда слева частота волн становится выше (больше), а справа - ниже (меньше), другими словами, если источник волн догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Эффе́кт До́плера - изменение частоты и длины волн , регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Сущность явления

Эффект Доплера легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, он услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

Математическое описание

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

,

где - частота, с которой источник испускает волны, - скорость распространения волн в среде, - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

где - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо в формуле (2) значение частоты из формулы (1), получим формулу для общего случая:

где - скорость света , - скорость источника относительно приёмника (наблюдателя), - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то , если приближается - .

Релятивистский эффект Доплера обусловлен двумя причинами:

  • классический аналог изменения частоты при относительном движении источника и приёмника;

Последний фактор приводит к поперечному эффекту Доплера, когда угол между волновым вектором и скоростью источника равен . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

Как наблюдать эффект Доплера

Поскольку явление характерно для любых волн и потоков частиц, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль или поезд будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

Применение

  • Доплеровский радар - радар , который измеряет изменение частоты сигнала, отражённого от объекта. По изменению частоты вычисляется радиальная составляющая скорости объекта (проекция скорости на прямую, проходящую через объект и радар). Доплеровские радары могут применяться в самых разных областях: для определения скорости летательных аппаратов, кораблей, автомобилей, гидрометеоров (например, облаков), морских и речных течений , а также других объектов.
  • Астрономия
    • По смещению линий спектра определяют лучевую скорость движения звёзд , галактик и других небесных тел. С помощью эффекта Доплера по спектру небесных тел определяется их лучевая скорость . Изменение длин волн световых колебаний приводит к тому, что все спектральные линии в спектре источника смещаются в сторону длинных волн, если лучевая скорость его направлена от наблюдателя (красное смещение), и в сторону коротких, если направление лучевой скорости - к наблюдателю (фиолетовое смещение). Если скорость источника мала по сравнению со скоростью света (300 000 км/с), то лучевая скорость равна скорости света, умноженной на изменение длины волны любой спектральной линии и делённой на длину волны этой же линии в неподвижном источнике.
    • По увеличению ширины линий спектра определяют температуру звёзд
  • Неинвазивное измерение скорости потока. С помощью эффекта Доплера измеряют скорость потока жидкостей и газов. Преимущество этого метода заключается в том, что не требуется помещать датчики непосредственно в поток. Скорость определяется по рассеянию ультразвука на неоднородностях среды (частицах взвеси , каплях жидкости, не смешивающихся с основным потоком, пузырьках газа).
  • Охранные сигнализации. Для обнаружения движущихся объектов
  • Определение координат. В спутниковой системе Коспас-Сарсат координаты аварийного передатчика на земле определяются спутником по принятому от него радиосигналу, используя эффект Доплера.

Искусство и культура

  • В 6-ой серии 1-го сезона американского комедийного телесериала «The Big Bang Theory » доктор Шелдон Купер идёт на Хэллоуин , для которого надел костюм, символизирующий эффект Доплера. Однако все присутствующие (кроме друзей) думают, что он - зебра .

Примечания

См. также

Ссылки

  • Применение эффекта Доплера для измерения течений в океане

Wikimedia Foundation . 2010 .

Смотреть что такое "Эффект Доплера" в других словарях:

    эффект Доплера - доплеровский эффект Изменение частоты, возникающее при перемещении передатчика относительно приемника или наоборот. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва … Справочник технического переводчика

    эффект Доплера - Doplerio reiškinys statusas T sritis fizika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. эффект Доплера, m; явление Доплера, n pranc. effet Doppler, m … Fizikos terminų žodynas

    эффект Доплера - Doppler io efektas statusas T sritis automatika atitikmenys: angl. Doppler effect vok. Doppler Effekt, m rus. доплеровский эффект, m; эффект Доплера, m pranc. effet Doppler, m ryšiai: sinonimas – Doplerio efektas … Automatikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Energetika apibrėžtis Spinduliuotės stebimo bangos ilgio pasikeitimas, šaltiniui judant stebėtojo atžvilgiu. atitikmenys: angl. Doppler effect vok. Dopplereffekt, m rus. доплеровский эффект, m; эффект Доплера, m … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    эффект Доплера - Doplerio efektas statusas T sritis Standartizacija ir metrologija apibrėžtis Matuojamosios spinduliuotės dažnio pokytis, atsirandantis dėl reliatyviojo judesio tarp pirminio ar antrinio šaltinio ir stebėtojo. atitikmenys: angl. Doppler effect vok … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Эффект Доплера - изменение частоты и, соответственно, длины волны излучения, воспринимаемое наблюдателем, из-за движения источника излучения или движения наблюдателя.

Рисунок 1. Изменение длины волны, вызванное движением источника

Для волн, распространяющихся в среде, таких как звуковые волны, эффект зависит от скорости наблюдателя и источника относительно среды, в которой эти волны распространяются. Таким образом, суммарный эффект Доплера может быть результатом движения источника, движения наблюдателя или движения среды. Каждый из этих эффектов анализируется отдельно.

В классической физике, где скорости источника и приемника относительно среды ниже, чем скорость волн в среде, связь между наблюдаемой частотой и источником частоты определяется по формуле:

${\rm c-\ }$ это скорость волн в среде;

${{\rm v}}_{{\rm r}}{\rm -}{\rm \ }$это относительная скорость приемника;

${{\rm v}}_{{\rm s}}{\rm -}$ относительная скорость источника.

Приведенная выше формула предполагает, что источник либо непосредственно приближается или удаляется от наблюдателя.

Если скорость, $v_s\ $а также $v_r\ $малы по сравнению со скоростью волны, отношения между наблюдаемой частотой и источником частоты можно записать:

$\Delta v=v_r-v_s-$ это скорость приемника относительно источника: она положительна, когда источник и приемник движутся навстречу друг другу.

Рисунок 2. Эффект Доплера, наблюдаемый в потоке воды вокруг лебедя

Применение эффекта Доплера

    Эффект Доплера для электромагнитных волн, таких как свет, имеет большое значение в астрономии и дает в результате так называемое красное смещение или синие смещение. Он был использован для измерения скорости, при которой звезды и галактики приближаются или удаляются от нас; то есть, их радиальные скорости.

    Положительная радиальная скорость показывает, что звезда удаляется от Солнца, отрицательная, что она приближается.

    Радар

    Эффект Доплера используется в некоторых типах радаров для измерения скорости обнаруженных объектов. В радаре луч выстреливает по движущейся мишени - например, автомобилю, так как полиция использует радар для фиксирования скорости автомобилистов -- по мере приближения или удаления от радара.

    Медицинская визуализация и измерение кровотока

    Эхокардиограмма может, в определенных пределах, производить точную оценку направления кровотока и скорости крови и сердечной ткани в любой произвольной точке с использованием эффекта Доплера. Одним из недостатков является то, что ультразвуковой луч должен быть направлен параллельно потоку крови.

    Измерения скорости кровотока также используются в других областях медицинского ультразвукового исследования, например в акушерском ультразвуковом исследовании, и неврологии. Измерение скорости кровотока в артериях и венах на основе эффекта Доплера является эффективным инструментом для диагностики сосудистых проблем, таких как стеноз.

Пример 1

При излучении спектра излучения некоторой туманности линия излучения водорода ${\lambda }_a=656,3\ нм$ оказалась смещенной на $\Delta \lambda =2,5\ нм$ в область с большей длиной волны (красное смещение). Определить скорость $v$ движения туманности относительно Земли и указать, удаляется она от Земли или приближается к ней.

Эффект Доплера описывается формулой

$v >0$ при приближении к наблюдателю

Длина волны

\[\lambda =\frac{c}{v}\] \[\Delta \lambda =\lambda -{\lambda }_0=\frac{c}{U}-{\frac{c}{U}}_0=\frac{c-v}{U_0}-\frac{c}{U_0}=-\frac{v}{U_0}\ (1)\] \

Подставим (2) в (1) и получим

\[\Delta \lambda =-\frac{v\cdot {\lambda }_{\alpha }}{c}\] \ \

Ответ: туманность удаляется со скоростью $1,14\cdot {10}^6{м}/{с}$.

Объектом изучения любознательного физика может стать любое явление: плавающая в озере лодка, играющий оркестр и даже звук приближающегося поезда. Последнее, кстати, в своё время натолкнуло выдающегося австрийского учёного Кристиана Доплера на описание теории, которую позже докажут другие учёные с помощью серии зрелищных экспериментов. Результатом их труда стало описание эффекта, который позже назовут в честь Доплера.

Этот эффект в свою очередь дал огромный скачок не только в развитии астрономии, но и, возможно, даже в описании современной Теории Большого взрыва.

Кристиан Андреас Доплер

1803—1853

Австрийский математик и физик. Обосновал зависимость частоты звуковых и световых колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волн и наблюдателя относительно друг друга. Физический эффект, открытый Доплером, является неотъемлемой частью современных теорий о происхождении Вселенной

​Волны на поверхности воды

История открытия Кристиана Доплера началась с того, что он обратил внимание на поведение волн, получающихся на поверхности воды от движущихся тел. Частота волн, исходящих в сторону движения объекта, выше, чем частота волн, исходящих в противоположную сторону. На рисунке можно увидеть, что волны расходятся от лодки неравномерно: в сторону движения лодки их количество больше, а за ней — меньше.

Важно! Частота волн — это количество повторений за единицу времени (f — frequency, частота).

Тогда как от поплавка, качающегося на воде, расходятся волны, количество которых одинаково во всех направлениях. То есть, у них одинаковая частота.

Исходя из этих наблюдений, Доплер попытался перенести эту закономерность на другие виды волн: звуковые и световые. Как вы помните из предыдущего номера, все типы волн имеют одинаковые свойства. Он сформулировал теорию, которая объясняла увеличение (уменьшение) частоты волн в зависимости от движения объекта относительно наблюдателя. Например, если лодка плывёт в нашу сторону частота доходящих до нас волн будет выше, а частота волн, отходящих от нас (и от лодки), будет меньше.

​Звуковые волны

Первую попытку экспериментально проверить теорию Доплера осуществил Христофор Бейс-Баллот в 1845 году. Для проведения этого необычного эксперимента понадобилось два оркестра и самый быстрый поезд того времени (64 км/ч). Идея эксперимента заключалась в следующем: на поезде, следовавшем из Утрехта в Амстердам, разместили оркестр трубачей, которые громко играли определённую ноту. На перроне их дожидался Бейс-Баллот и другая группа трубачей, которая играла ту же ноту. Вот что из всего этого вышло: звук ноты с поезда при приближении звучал иначе (диссонировал, то есть тон ноты был выше) с тем, что играли трубачи. Хотя оба оркестра играли одно и то же, на одинаковых инструментах. И дело было не в громкости или посторонних шумах.

Учёный установил, что с приближением поезда диссонанс исчезал, вплоть до полного его исчезновения, когда поезд был у перрона. Далее произошёл обратный процесс: чем дальше поезд удалялся, тем сильнее становился диссонанс. Возможно, вы тоже были свидетелем подобного явления: вспомните вой сирены проезжающей мимо вас машины скорой помощи. Складывается ощущение, что сирена играет на трёх разных тонах, при том, что она не могла его менять.

Обратите внимание на сходство поведения звуковых волн с тем, что мы наблюдали на примере с движением лодки по озеру.

Этот эксперимент подтвердил верность суждений Доплера и позволил в будущем учёным использовать эту закономерность и провести аналогичный эксперимент, но уже на электромагнитных волнах.

​Электромагнитные волны

Сами того не подозревая, мы часто сталкиваемся с электромагнитными волнами (радиоволны, рентгеновские лучи, инфракрасное излучение), но самым привычным из них является видимый свет. Любая волна характеризуется частотой (f) или длиной волны (λ), причем получить один параметр, зная другой, достаточно просто.

Где v — фазовая скорость, волны (для электромагнитных волн, v = 299 792 458 м/c); T — период колебаний (величина обратная частоте).

Длина электромагнитных волн может быть разной, но человеческий глаз различает только определённый спектр волн. Их длина начинается от 400 нанометров (фиолетовый) и заканчивается 700 нанометрами (красный).

В зависимости от длины электромагнитной волны, глаз распознаёт её как определённый цвет. Например, то, что мы называем синим цветом — это излучение волны в диапазоне от 400 — 450 нм.

Как мы отметили ранее, Доплер провёл параллель между распространением акустических и оптических волн. В своей основной работе, где впервые были изложены его идеи, учёный задался вопросом: «Почему звёзды имеют тот или иной цвет?». Он исходил из следующих соображений: 1) очевидно, звёзды являются источниками излучения света; 2) испускаемый свет — это равномерная (в одинаковых пропорциях) комбинация всех цветов. Если смешать все видимые цвета, вы получите белый (это работает только светом). В зависимости от движения источника, происходит увеличение или уменьшение частоты испускаемого им света. Мы видим это как изменение цвета, потому что соответственно меняется длина волны. Вспомните пример с лодкой. Доплер полагал, что при смещении, некоторые цветовые компоненты как бы «выходят» из видимого спектра, а оставшаяся комбинация определяет цвет звезды.

Позднее выяснилось, что в его теории есть неточности, связанные с тем, что в то время человечество не обладало достаточными знаниями о природе света.

Главной ошибкой Доплера было то, что он считал, что все звёзды испускают белый свет. Он не знал о существовании инфракрасного и ультрафиолетового излучений, куда собственно должны были «уходить» цветовые компоненты. Тем не менее, общие суждения об изменении длины волны при движении источника излучения были верны.

​Почему разные элементы светятся по разному?

Согласно простейшей модели строения атома Бора, электроны находятся на чётко определённых орбитах вокруг ядра атома (Планетарная система атома). При этом, они могут скачками переходить с орбиты на орбиту, излучая или поглощая энергию, и это явление называется квантовым скачком . Если электрон переходит на более низкую орбиту, он теряет квант энергии и излучает квант света — фотон, который характеризуется строго определённой длиной волны, зависящей от потери энергии при квантовом скачке. Излучаемые таким образом фотоны мы воспринимаем, как свечение совершенно определённого цвета — раскалённая медная проволока, например, светится синим. Это означает, что верно и обратное, если мы видим, например, синее свечение при разогреве металла, скорее всего, это медь. Изучением подобных взаимосвязей между свечением атома и его структурой занимается раздел физики под название «спектроскопия» .

Теперь представьте себе, что вы наблюдаете в телескоп за раскалённой проволокой в космосе и она светится синим цветом. Вы опять же можете сказать, что она медная. Именно такой принцип лежит в основе спектрального анализа далёких звёзд. Только необходимо отметить, что звёзды состоят не из меди, а из гелия и водорода.

​Красное доплеровское смещение

Американский астроном , впервые измеряя расстояния до ближайших галактик на новейшем телескопе, обнаружил, что спектральный анализ далёких звёзд отличается от аналогичных звёзд поблизости. Причём цвета были смещены в красную область. Единственным объяснением этого явления мог быть эффект Доплера. То есть свет, исходящий от более далёкой звезды в направлении Земли имел большую длину, то есть был более красным. Подобное «покраснение», то есть красное смещение наблюдалось по отношению ко всем видимым звёздам.

Это привело Хаббла к идее, что все звёзды отдаляются друг от друга. Причём, чем дальше находится звезда, тем быстрее она отдаляется. Астроном смог вывести элегантную математическую модель этого расширения.

Именно закон Хаббла, а точнее его прямое следствие лежит в основе умопомрачительной идеи о расширении Вселенной. Ведь если «отмотать» время назад, то звёзды находились ближе друг к другу. Продолжая «отматывать» время, в конце концов мы получим следующую картину: в начале времён все звёзды находились в одном месте, в одной точке. И это было зарождением нашей Вселенной.

Сегодня — самая логичная модель появления Вселенной и обосновать её ученые смогли именно благодаря эффекту Доплера.

Эффект Доплера - это хорошо знакомое изменение звука, происходящее при перемещении источника звука относительно слушателя. Неподвижному слушателю кажется, что звук становится более высоким по мере приближения его источника и более низким по мере его удаления.

Это так называемое доплеровское смещение вызывается звуковыми волновыми фронтами, которые по мере приближения источника к слушателю достигают его с постепенно увеличивающейся частотой. Возрастание частоты сопровождается уменьшением длины волны. Ученые установили, что чем больше частота звука, тем выше его тон. Когда объект удаляется от слушателя, направленность изменений меняется на противоположную. Частота уменьшается, длина волны увеличивается, а кажущийся тон звука, воспринимаемого слушателем, становится все более низким.

С эффектом Доплера можно легко познакомиться, если прислушаться к свистку проходящего поезда, сиренам медицинских и полицейских машин или гулу реактивных двигателей самолетов.

Прибывающий поезд свистит более пронзительно

Удаляющийся поезд

Когда поезд удаляется, волновым фронтам его свистка требуется больше времени для достижения слушателя, поэтому тот слышит снижение тона.

Приближающийся поезд

Когда поезд приближается, звуковые волны достигают слушателя быстрее и кажутся более высокими в тоне.

Иллюзия, вызванная движением

Для слушателя на поезде тон свистка неизменен. Однако для слушателя, находящегося сзади или впереди поезда (рисунок справа), тон изменяется из-за неодинаковости расстояния между волновыми фронтами.

Альтернативный взгляд на проблему

Другой способ рассмотрения эффекта Доплера заключается в представлении слушателя приближающимся к источнику звука. Чем ближе пешеход подходит к колоколу, тем быстрее волновые фронты достигают его ушей и тем выше для него тон колокольного звона.

Два вида сверху

Звуковые волны от неподвижного источника распространяются в виде концентрических окружностей (рисунок вверху). Волны от движущегося источника (рисунок вверху справа), концентрируются впереди источника. Длины волн уменьшаются и тон становится более высоким.